If you're seeing this message, it means we're having trouble loading external resources on our website.

웹 필터가 올바르게 작동하지 않으면 도메인 *. kastatic.org*.kasandbox.org이 차단되어 있는지 확인하세요.

주요 내용
현재 시간:0:00전체 재생 길이:1:34

동영상 대본

잘했어요! 이전 문제처럼 부품이 4개인 뱀 로봇을 만든다고 합시다 그 경우가 얼마나 될까요? 첫 번째 부품은 4가지 두 번째 부품은 3가지 세 번째 부품은 2가지 네 번째 부품은 1가지입니다 4 × 3 × 2 × 1= 24가지입니다 4 × 3 × 2 × 1= 24가지입니다 4가지 부품만을 이용하여 24가지 로봇을 만들 수 있는게 놀랍지 않나요? 점점 더 올려보죠 부품이 10개인 뱀 로봇을 생각해 봅시다 조합의 수는 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1입니다 조합의 수는 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1입니다 조합의 수는 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1입니다 계산하면 3,628,800가지입니다 계산하면 3,628,800가지입니다 10가지 부품만을 사용했는데 말이죠 이런 유형의 계산은 조합론에서 항상 나타나므로 수학자들이 당연히 이름과 약칭을 만드는 것이겠죠 이것을 팩토리얼이라 부르고 느낌표로 표기합니다 예를 들어, 4!는 4 × 3 × 2 × 1입니다 4 × 3 × 2 × 1입니다 따라서 4! = 24입니다 5! = 120입니다 10! = 3,628,800입니다 정말 경우의 수가 넘쳐나는군요! 정말 경우의 수가 넘쳐나는군요! 잠시 멈추고 이 개념을 다음 시간에 배워봅시다