If you're seeing this message, it means we're having trouble loading external resources on our website.

웹 필터가 올바르게 작동하지 않으면 도메인 *. kastatic.org*.kasandbox.org이 차단되어 있는지 확인하세요.

주요 내용
현재 시간:0:00전체 재생 길이:7:44

동영상 대본

이번 동영상에서는 집합의 개념에 대해 알아보고 또한 집합을 연산해 보고자 합니다 집합은 그저 다른 요소들의 모임입니다 예를 들어서 집합 X가 있다고 가정합니다 숫자로 예를 들겠지만 집합은 모든 것을 포함할 수 있습니다 색상 사람 다른 집합 자동차 가축까지 포함할 수 있습니다 하지만 숫자들이 제일 다루기 쉽습니다 글쎄요, 숫자이니까요 집합 X가 있다고 가정해 봅시다 여기에는 개별적인 요소인 숫자 3, 12, 5, 13이 들어 있습니다 여기에는 개별적인 요소인 숫자 3, 12, 5, 13이 들어 있습니다 이게 바로 집합입니다 또 다른 집합을 만들어 봅시다 Y라고 하겠습니다 Y라 하지 않고 A라고 할 수도 있고 살만 칸이라고 할 수도 있고 어떤 이름도 붙일 수 있습니다 이번에는 Y라고 부르겠습니다 그리고 Y에는 개별적인 요소인 숫자 14, 15, 6, 3이 들어 있습니다 숫자 14, 15, 6, 3이 들어 있습니다 집합 두 개를 이렇게 정의하였습니다 수학에서는 보통 원소를 작은 중괄호 안에 넣고 쉼표로 구분합니다 원소를 작은 중괄호 안에 넣고 쉼표로 구분합니다 이제 집합의 연산에 대해 알아봅시다 첫 번째로 알아볼 연산은 교집합이라는 것입니다 X와 Y의 교집합은 이렇게 표기합니다 X와 Y의 교집합은 이렇게 표기합니다 이렇게 생각할 수 있습니다 집합 X와 Y 모두에 포함되는 원소들을 가지고 있는 집합이라고요 집합 X와 Y 모두에 포함되는 원소들을 가지고 있는 집합이라고요 교집합의 기호를 '그리고'라고 생각할 수 있습니다 교집합의 기호를 '그리고'라고 생각할 수 있습니다 그렇다면 X와 Y에 둘 다 있는 원소들은 무엇일까요? 그렇다면 X와 Y에 둘 다 있는 원소들은 무엇일까요? 두 집합을 모두 살펴보겠습니다 집합 X에 3이 있는데 집합 Y에도 있을까요? 네 모두 들어가 있습니다 그래서 이건 X와 Y의 교집합에 들어갑니다 숫자 12는 집합 X에 있지만 집합 Y에는 없습니다 그래서 이건 교집합에 포함되지 않습니다 5 역시 집합 X에는 있지만 Y에는 없고 13도 집합 X에는 있지만 Y에는 없습니다 따라서 X와 Y의 교집합에 속하는 원소는 한 개밖에 없습니다 따라서 X와 Y의 교집합에 속하는 원소는 한 개밖에 없습니다 3만 있네요 X와 Y의 교집합은 3입니다 다음 연산은 합집합입니다 X와 Y의 합집합은 '또는'이라는 뜻이라고 볼 수 있습니다 X 또는 Y에 있는 모든 원소를 포함합니다 X 또는 Y에 있는 모든 원소를 포함합니다 두 집합을 하나로 합친다고 생각하면 됩니다 두 집합을 하나로 합친다고 생각하면 됩니다 그래서 이 값은 먼저 집합은 개별적인 요소의 모음이라는 것을 기억해야 합니다 여기서 집합에 대해 생각할 때 3은 숫자입니다 시험 성적이나 사과 개수를 나타내는 수가 아닙니다 시험 성적이나 사과 개수를 나타내는 수가 아닙니다 같은 개수의 사과를 가진 사람들은 여러명 있을 수 있지만 같은 개수의 사과를 가진 사람들은 여러명 있을 수 있지만 여기서 말하는 숫자는 문자에 해당되므로 3을 한 번만 가질 수 있습니다 3은 집합 X와 Y에 모두 들어가지만 3을 여기 한 개만 놓겠습니다 12도 있고, 5도 있고, 13도 있습니다 그리고 단순화하기 위해 집합에서는 순서를 생각하지 않습니다 그냥 집합 X의 모든 원소를 넣고 집합 Y에서 뭘 추가해야 하는지 보겠습니다 아직 14가 없으니까 14를 넣습니다 15도 아직 안 넣었고 6도 아직 안 넣었습니다 3은 이미 이 집합에 있습니다 3은 이미 이 집합에 있습니다 X와 Y의 합집합을 구했습니다 합집합과 교집합이나 그 외의 복잡한 집합을 시각화 할 때는 합집합과 교집합이나 그 외의 복잡한 집합을 시각화 할 때는 벤다이어그램을 사용할 수 있습니다 지금 그리는 상자는 전체 숫자의 집합이고 여기 안에는 모든 숫자들이 있습니다 집합 X를 나타낼 원을 그리겠습니다 그리고 이 안에 집합 X의 원소들도 적으면 되고요 3, 5, 12, 13이 있습니다 그리고 집합 Y를 그리겠습니다 보이다시피 3이 중복되기 때문에 약간 중첩해서 그리겠습니다 3은 두 집합 모두의 요소이기 때문입니다 그리고 집합 Y에는 14, 15, 6도 있습니다 집합 X와 Y의 교집합을 생각한다면 두 집합이 겹치는 부분이 교집합입니다 이 부분이죠 그리고 겹치는 부분에 있는 유일한 숫자는 3입니다 그리고 겹치는 부분에 있는 유일한 숫자는 3입니다 이건 X와 Y의 교집합이고 두 집합의 합집합은 둘의 조합입니다 합집합은 이 모든 숫자들은 합친 것입니다 합집합은 이 모든 숫자들은 합친 것입니다 한 가지 예를 더 들어서 교집합과 합집합을 더 이해해 보도록 하겠습니다 에를 들어 집합 A에는 11, 4, 12, 7이 있고 그리고 집합 B에는 13, 4, 12, 10, 3이 있다고 가정합시다 그리고 집합 B에는 13, 4, 12, 10, 3이 있다고 가정합시다 먼저 A A의 색을 쓰도록 하겠습니다 A와 B의 교집합이 무엇인지 찾아보겠습니다 A와 B의 교집합이 무엇인지 찾아보겠습니다 교집합은 두 집합에 모두 있는 수입니다 여기에는 11이 있지만 여기에는 11이 없습니다 그래서 이것은 교집합이 아닙니다 여기는 4가 있고 여기에도 4가 있습니다 A와 B 모두에 4가 있으니 여기 넣도록 하겠습니다 12도 A와 B 모두에 있으니 여기에 넣도록 하겠습니다 숫자 7은 A에만 존재합니다 13, 10, 3은 모두 집합 B에만 있으니 다 했습니다 13, 10, 3은 모두 집합 B에만 있으니 다 했습니다 4와 12가 집합 A와 B의 교집합입니다 또한 이것을 또 다른 집합이라고 정의할 수 있습니다 또한 이것을 또 다른 집합이라 정의할 수 있습니다 집합 C가 A와 B의 교집합이라고 할 수 있고 이는 이 집합을 가리킵니다 그럼 이제 합집합에 대해서 알아보겠습니다 주황색을 사용해 A를 나타내겠습니다 A와 B의 합집합에는 어떤 원소가 해당될까요? 어떤 원소가 해당될까요? A의 원소 전부인 11, 4, 12, 7을 넣고 A의 원소 전부인 11, 4, 12, 7을 넣고 A에 없는 B의 원소들을 넣겠습니다 13을 넣고 4, 12는 넣었고 10, 3을 넣어줍니다 순서는 원하는 대로 할 수 있습니다 집합에서는 순서를 생각하지 않습니다 그래서 바로 이게 합집합입니다 그래서 바로 이게 합집합입니다