If you're seeing this message, it means we're having trouble loading external resources on our website.

웹 필터가 올바르게 작동하지 않으면 도메인 *. kastatic.org*.kasandbox.org이 차단되어 있는지 확인하세요.

주요 내용

동영상 대본

지난 동영상에서는 이 정리를 이용해 특정 형태의 합성함수를 계산하였습니다 이번 동영상에서는 조금 더 어려운 예제를 살펴보겠습니다 x가 0에 가까워질 때 x가 0에 가까워질 때 f(g(x))의 극한을 구한다고 합시다 f(g(x))의 극한을 구한다고 합시다 먼저 동영상을 멈추고 이 정리를 적용 가능한지 생각해 보세요 먼저 생각해 보아야 할 것은 x가 0에 가까워질 때 g(x)의 극한을 보고 첫 번째 조건을 만족하는지 보는 것입니다 여기 g(x)를 보면 x가 왼쪽에서 0에 가까워질 때 g는 2에 가까워집니다 x가 오른쪽에서 0에 가까워질 때 g는 2에 가까워집니다 따라서 이것은 2입니다 조건을 만족하네요 이제 두 번째 조건을 위해 f가 극한값 2에서 연속인지 보죠 x가 2일 때 f는 연속이 아닙니다 따라서 두 번째 조건을 만족하지 않습니다 따라서 이 정리를 바로 적용할 수 없죠 하지만 정리를 적용할 수 없다고 해서 꼭 극한이 존재하지 않는 것은 아닙니다 예를 들어 이 경우 극한은 사실 존재합니다 이렇게 생각해 볼 수 있습니다 x가 왼쪽에서 0에 가까워질 때 g는 위쪽에서 2에 가까워집니다 이것을 f에 적용할 수 있습니다 위에서 2에 가까워지는 것을 f의 대입값으로 사용하면 함수가 0에 가까워지네요 반대로도 할 수 있습니다 오른쪽에서 0에 가까워지면 함수의 값은 밑에서 2에 가까워집니다 밑에서 2에 가까워지면 f의 함숫값은 0에 가까워집니다 그러므로 두 경우 모두 함수 f의 값은 0에 가까워집니다 이렇게 정리를 사용하진 못했지만 이것이 0과 같다는 것을 알아낼 수 있었습니다 이것이 0과 같다는 것을 알아낼 수 있었습니다 이제 다른 예제를 드리죠 x가 2에 가까워질 때 f(g(x))의 극한을 구해 봅시다 x가 2에 가까워질 때 f(g(x))의 극한을 구해 봅시다 x가 2에 가까워질 때 f(g(x))의 극한을 구해 봅시다 동영상을 멈추고 먼저 이 정리를 적용할 수 있는지 보세요 x가 2에 가까워질 때 g(x)의 극한이 있는지 보아야 합니다 2를 왼쪽에서 보면 g는 -2에 가까워집니다 x = 2를 오른쪽에서 접근하면 g는 0에 가까워집니다 따라서 오른쪽과 왼쪽의 극한이 같지 않으니 이것은 존재하지 않습니다 이 조건을 만족하지 못하죠 따라서 정리를 적용할 수 없습니다 하지만 이미 보았듯이 정리를 적용할 수 없다고 해서 극한이 존재하지 않는 것은 아닙니다 생각해 보고 싶다면 아까와 비슷한 방법으로 극한이 존재하지 않는다는 것을 확인해 보세요 극한이 존재하지 않는다는 것을 확인해 보세요