If you're seeing this message, it means we're having trouble loading external resources on our website.

웹 필터가 올바르게 작동하지 않으면 도메인 *. kastatic.org*.kasandbox.org이 차단되어 있는지 확인하세요.

주요 내용

동영상 대본

좋아요 합성함수의 극한을 구하는 연습을 더 해보죠 합성함수의 극한을 구하는 연습을 더 해보죠 x가 -1에 가까워질 때 g(h(x))의 극한은 무엇일까요? 함수 g의 그래프는 왼쪽에 있고 함수 h의 그래프는 오른쪽에 있습니다 함수 h의 그래프는 오른쪽에 있습니다 동영상을 멈추고 스스로 풀어보세요 처음엔 이렇게 생각할 가능성이 있습니다 x가 -1에 가까워질 때 h(x)의 극한을 생각하고 극한이 존재한다면 g에 대입한다고요 x가 -1에 가까워질 때 h(x)의 극한을 구하면 오른쪽에서 접근하는 것과 오른쪽에서 접근하는 것과 왼쪽에서 접근하는 것의 극한이 다릅니다 그래서 여기에서 그만두고 싶을 수 있는데 이번 동영상에서는 이 합성함수의 극한이 존재한다는 것을 알아볼 것입니다 x가 -1에 가까워질 때 h(x)의 극한이 존재하지 않더라도 말이죠 그러면 이걸 어떻게 구할까요? 오른쪽 극한과 왼쪽 극한을 구해볼 수 있습니다 x가 -1에 가까워질 때 g(h(x))의 오른쪽 극한을 구해 봅시다 g(h(x))의 오른쪽 극한을 구해 봅시다 그러면 x가 -1에 가까워질 때 h(x)의 오른쪽 극한은 무엇인가요? 오른쪽에서 -1에 가까워질 때 h가 -2에 가까워지는 것 같네요 다르게 생각해보면 이건 x가 -2에 가까워질 때 h(x)의 극한과 같습니다 그리고 -2를 어떤 방향에서 접근하죠? -2보다 큰 값에서 접근합니다 h(x)는 -2까지 아래로 감소합니다 x가 오른쪽에서 -1에 가까워지면서요 g(h(x))보다 큰 값에서 -2에 가까워집니다 g(h(x))보다 큰 값에서 -2에 가까워집니다 g(h(x))보다 큰 값에서 -2에 가까워집니다 색깔로 구분하기 쉽게 하겠습니다 이건 x가 양의 g(x)의 방향에서 -2에 가까워질 때의 극한을 생각하는 것과 같습니다 -2에 가까워질 때의 극한을 생각하는 것과 같습니다 여기서 h는 g의 대입값일 뿐입니다 따라서 g의 대입값은 위에서 -2에 가까워집니다 -2보다 값이 큰 오른쪽에서요 g는 3에 가까워짐을 볼 수 있습니다 따라서 이것은 3과 같습니다 이제 x가 g(h(x))의 왼쪽에서 -1에 가까워질 때의 극한을 구해 봅시다 먼저 x가 왼쪽에서 -1에 가까워질 때 h는 무엇에 가까워지는지 보면 됩니다 x가 왼쪽에서 -1에 가까워질 때 h는 -3에 가까워지는 것 같네요 이것은 x가 -3에 가까워질 때 h(x)의 극한이라고 할 수 있고 이것은 x가 -3에 가까워질 때 h(x)의 극한이라고 할 수 있고 -3보다 큰 값에서 -3에 접근합니다 -3보다 큰 값에서 -3에 접근합니다 h(x)는 위에서 -3에 가까워지죠 혹은 -3보다 큰 값에서요 이 때 g(h(x))의 극한입니다 이렇게 생각할 수 있습니다 g의 대입값이 오른쪽에서 -3에 가까워질 때 극한값은 무엇일까요? 오른쪽에서 -3에 접근하면 g는 딱 3에 있습니다 따라서 이것도 3입니다 이 경우 왼쪽 극한과 오른쪽 극한이 서로 같음을 알 수 있습니다 따라서 오른쪽 극한과 왼쪽 극한이 같으므로 구하려고 한 극한이 이것과 같음을 알 수 있습니다 구하려고 한 극한이 이것과 같음을 알 수 있습니다 아주 흥미로운 예제네요 내부 함수 h(x)의 극한은 존재하지 않지만 내부 함수 h(x)의 극한은 존재하지 않지만 합성함수의 극한은 존재했습니다