If you're seeing this message, it means we're having trouble loading external resources on our website.

웹 필터가 올바르게 작동하지 않으면 도메인 *. kastatic.org*.kasandbox.org이 차단되어 있는지 확인하세요.

주요 내용
현재 시간:0:00전체 재생 길이:3:07

동영상 대본

삼각함수로 구성된 식을 간단하게 표현하는 예제를 풀어봅시다 1 - (sinΘ)^2 의 전체에 (cosΘ)^2 가 곱해진 식이 있다고 합시다 이 식을 어떻게 간단히 표현할까요? 우리가 알고 있는 것은 단위원으로부터 알 수 있는 삼각함수의 기본적인 성질로 (cosΘ)^2 + (sinΘ)^2 의 값은 1 이라는 것 입니다 그런 다음 양변에서 (sinΘ)^2 을 빼주면 (cosΘ)^2 가 1-(sinΘ)^2 와 같다는 것을 알 수 있습니다 (cosΘ)^2 가 1-(sinΘ)^2 와 같다는 것을 알 수 있습니다 우리에겐 2가지 선택지가 있습니다 우리는 1-(sinΘ)^2을 (cosΘ)^2 으로 바꾸거나 우리는 1-(sinΘ)^2을 (cosΘ)^2 으로 바꾸거나 (cosΘ)^2 을 1-(sinΘ)^2 로 바꿀 수 있습니다 (cosΘ)^2 을 1-(sinΘ)^2 로 바꿀 수 있습니다 두 번째 방식은 식이 더 복잡하기 때문에 첫 번째 방식을 추천합니다 그래서 이 부분을 (cosΘ)^2 로 바꾼다면 식이 더 간단해질 것입니다. 그럼 한번 해봅시다 이 식은 (cosΘ)^2 에 또 다른 (cosΘ)^2 을 곱한 것이 될 것입니다 그래서 전체 식은 cosΘ X cosΘ X cosΘ X cosΘ 이 되어 (cosΘ)^4 가 될 것입니다 다른 예제를 풀어봅시다 (sinΘ)^2 를 1-(sinΘ)^2 로 나눈 식이 있다 해보죠 (sinΘ)^2 를 1-(sinΘ)^2 로 나눈 식이 있다 해보죠 이 식은 어떻게 정리가 될까요? 우리는 이미 1-(sinΘ)^2 이 (cosΘ)^2 과 같다는 것을 알고 있습니다 그래서 이식은 (sinΘ)^2 을 (cosΘ)^2 로 나눈 값이 될 것입니다 (cosΘ)^2 로 나눈 값이 될 것이며 이 식은 sinΘ 를 cosΘ 로 나눈 식을 전체 제곱한 것과 같습니다 sinΘ/cosΘ 는 무엇인가요? tanΘ 입니다 그래서 이 식은 (tanΘ)^2 과 같습니다 예제를 하나 더 풀어봅시다 (cosΘ)^2 + 1 + (sinΘ)^2 라는 식이 있다고 합시다 (cosΘ)^2 + 1 + (sinΘ)^2 라는 식이 있다고 합시다 (cosΘ)^2 + 1 + (sinΘ)^2 라는 식이 있다고 합시다 (cosΘ)^2 + 1 + (sinΘ)^2 라는 식이 있다고 합시다 이 값은 어떻게 정리가 될까요? 아마 여러분은 글씨의 색에 따라 식을 나누어 생각하려 할 것입니다 1 + (sinΘ)^2 는 어떤 값과 같을까? 그러나 단순히 식을 재배열하기만 하면 단위원에서의 정의에 의해 (cosΘ)^2 + (sinΘ)^2 의 값을 알 수 있습니다 임의의 Θ 에 대해 (sinΘ)^2 + (cosΘ)^2 은 1의 값을 가집니다 그래서 이 식은 1 + 1 이 되어 2의 값을 가지게 됩니다