로딩 중

등비수열의 일반항 이용하기

동영상 대본

주어진 등비수열은 i 번째 항이 3 곱하기 (-1/4)의 (i - 1)제곱으로 정의된 수열입니다 이 수열의 다섯째항은 무엇일까요? 동영상을 잠시 멈추고 한번 생각해 보세요 이 일반항을 이용해 봅시다 이 수열의 다섯째항은 일반항의 i에 5를 대입한 값과 같습니다 계산하면 3 곱하기 -1/4의 (5 - 1)제곱과 같습니다 정리하면 3 곱하기 -1/4의 4제곱이 되죠 계산해 봅시다 짝수 번을 제곱하므로 이 수는 양수가 될 거예요 음수를 짝수 번 곱하면 양수가 되기 때문이죠 3 곱하기 1의 4제곱은 그냥 1이 되죠 그리고 4의 제곱이 16이므로 4의 4제곱은 16의 제곱과 같습니다 16 × 16 = 256입니다 그러므로 식은 3 × 1/256이 되죠 앞에서 말했듯이 음수를 네 번 곱했기 때문에 이 수가 양수가 되는 거예요 음수를 네 번 곱하면 결국 양수가 됩니다 따라서 답은 3/256입니다 이렇게 수열의 다섯째항인 3/256을 구했습니다